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Human muscle spindles are wired 
to function as controllable signal-
processing devices
Michael Dimitriou*

Physiology Section, Department of Integrative Medical Biology, Umeå University, 
Umeå, Sweden

Abstract Muscle spindles are encapsulated sensory organs found in most of our muscles. Prev-
alent models of sensorimotor control assume the role of spindles is to reliably encode limb posture 
and movement. Here, I argue that the traditional view of spindles is outdated. Spindle organs can 
be tuned by spinal γ motor neurons that receive top-down and peripheral input, including from 
cutaneous afferents. A new model is presented, viewing γ motor activity as an intermediate coor-
dinate transformation that allows multimodal information to converge on spindles, creating flexible 
coordinate representations at the level of the peripheral nervous system. That is, I propose that 
spindles play a unique overarching role in the nervous system: that of a peripheral signal-processing 
device that flexibly facilitates sensorimotor performance, according to task characteristics. This role 
is compatible with previous findings and supported by recent studies with naturalistically active 
humans. Such studies have so far shown that spindle tuning enables the independent prepara-
tory control of reflex muscle stiffness, the selective extraction of information during implicit motor 
adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced 
signal-processing at the periphery may well prove a critical step in the evolution of sensorimotor 
control theories.

Introduction
Most of our skeletal muscles contain a large collection of muscle spindle organs. Spindles are gener-
ally believed to be basic mechanoreceptors that encode muscle stretch and provide reliable infor-
mation about actual limb posture and movement kinematics. Previous work and more recent studies 
using genetic manipulation methods have added a great deal of knowledge about the molecular 
mechanisms of mechanotransduction (e.g. Kruse and Poppele, 1991; Bewick and Banks, 2015; 
Woo et al., 2015). Spindles have been proposed to play a basic, low-level role in reflex motor control 
(Houk, 1976) and proprioception (Goodwin et  al., 1972), and their malfunction has been linked 
to impaired motor coordination (Sainburg et  al., 1993). An interesting recent proposition is that 
the mechanoreceptive part of spindles responds best to force-related variables, as shown in relaxed 
muscles (Blum et al., 2017). Still, the role of muscle spindle organs in their entirety (i.e. of the mech-
anoreceptor under in vivo efferent control) has remained unclear(for a recent comprehensive review 
see Macefield and Knellwolf, 2018).

In the relaxed muscle of the unengaged human, the characteristics of imposed muscle stretch are 
rather faithfully encoded by the signals of muscle spindle afferents. Specifically, there are two main 
types of muscle spindle receptors, the primary and the secondary, which give rise to the primary 
(type Ia) and secondary (type II) afferents, respectively (Boyd and Davidson, 1997). When imposing 
a ramp-and-hold stretch of the relaxed muscle, type Ia from this muscle are most responsive during 
muscle stretch, are sensitive to the rate of change of length (i.e., velocity), may encode static length 
but are silent during muscle shortening. That is, under passive conditions, primaries can be considered 
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to have both a good dynamic and fairly good 
static muscle-length sensitivity, whereas type II 
from passive muscle represent good static length 
sensitivity but a poorer dynamic sensitivity (Edin 
and Vallbo, 1990a). These response patterns 
reflect the general view of spindles, which says 
that type Ia firing encodes static muscle length 
and the velocity of stretch, and type II encode 
static muscle length. However, unlike other types 
of peripheral mechanoreceptors, the spindle 
organs have their own motor supply in the form of 
γ motor (‘fusimotor’) neurons (Barker and Chin, 
1961; Matthews, 1972). Despite their rich inner-
vation, the overarching role of muscle spindles 
in sensorimotor control has remained unclear, 
particularly so in the context of naturalistic active 
movement.

Figure  1A represents one prevalent model 
of how a voluntary movement is controlled and 
monitored (Wolpert and Miall, 1996). In this 
model, a controller in the CNS turns the intention 
to move into a motor command that is sent to 
skeletal muscles that power the action. A copy of 
the motor command is sent to internal forward 
models that make predictions about the sensory 
consequences of this action. The action itself 
generates feedback from sensory receptors. If the 
movement progresses as intended, there should 

be no discrepancy between the internally predicted signal and actual sensory feedback. This frame-
work views mechanoreceptors in muscle and skin as basic sensors that transduce physical stimuli into 
unimodal feedback signals, ignoring the independent motor supply to muscle spindles. However, 
in mammals, ~30% of spinal motor neurons are γ, which supply muscle spindles exclusively (Kuffler 
et al., 1951; Burke et al., 1977). These γ neurons can be controlled by descending commands and/
or peripheral afferent input (Figure 1B; see also following sections). The nervous system has clearly 
placed a premium on the control of muscle spindle signals at source. Given the renewed emphasis 
on proprioceptive feedback in motor control (e.g. Crevecoeur et al., 2016; Scott, 2016; Tsay et al., 
2021), it is important to strive for a better understanding of how the most complex sensory organ 
outside of the special senses contributes to sensorimotor function.

A recent debate addressed the independent top-down tuning of human muscle spindles (Burke, 
2021a; Burke, 2021b; Dimitriou, 2021a; Dimitriou, 2021b). Here, all possible modes of spindle 
control are addressed (i.e. independent and α-linked top-down control, as well as peripheral control) 
to support a unifying proposal: spindles are best thought of as signal-processors that enable flexible 
coordinate representations at the level of the PNS (Figure 1B). In this framework, spindles can facil-
itate sensorimotor performance in a flexible manner according to task characteristics, and not limit 
their contribution to routinely encoding actual posture and movement. In other words, I propose that 
spindles primarily function for the benefit of sensorimotor performance rather than veridical proprio-
ception. As described in the following sections, this proposal is compatible with previous findings and 
supported by recent studies where human participants actively engage in fundamental sensorimotor 
tasks.

Spindle tuning linked to skeletal muscle activation
The most popularized explanation for human spindle control is based on ‘α-γ co-activation’ (Vallbo, 
1970). In this view, γ fusimotor neurons are activated virtually the same time as α motor neurons, in 
order to prevent spindles from falling slack during muscle contraction. Essentially, in this context, 
α-γ co-activation simply maintains the stretch sensor operational. That is, the proposed function of 
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Figure 1. Human sensorimotor control and muscle 
spindle innervation. (A) One prevalent model of human 
sensorimotor control. Proprioceptors in muscle and 
skin are viewed as basic sensors, reliably encoding 
actual mechanical state in unimodal coordinates. 
Advanced (e.g. selective) processing of sensory signals 
is thought to occur only in the CNS. (B) The role of 
muscle spindles under naturalistic efferent control has 
remained unclear. Mammalian muscle spindles can 
be powerfully controlled by γ motor neurons. These 
lower motor neurons are subject to both top-down and 
peripheral control, including from cutaneous afferents. 
I propose that spindles and their control enable 
advanced processing of sensorimotor information, 
giving rise to flexible coordinate representations at the 
level of the peripheral nervous system (PNS).
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fusimotor control is to compensate for the shortcomings/complexities of the neuromuscular system 
allowing spindles to keep functioning as reliable kinematic proprioceptors. This rather mundane 
fusimotor function is probably one reason why prevalent computational frameworks have ignored 
fusimotor control. Most support for a lack of independence between α and γ motor neuron activity has 
come from recording spindle afferent signals during isometric contractions or during unnaturally slow 
and restricted movements (e.g. Gandevia and Burke, 1985; Wessberg and Vallbo, 1995; Kakuda 
et al., 1996). Moreover, co-activation of extrafusal (skeletal) and intrafusal (spindle) muscle fibers can 
be easily implemented through the more primitive beta neurons (Jami et al., 1982; Emonet-Dénand 
et al., 1992). β neurons are essentially just α motor neurons that branch out to innervate extrafusal 
and intrafusal muscle fibers. Both mammals and lower vertebrates have β motor neurons, but only 
mammals seem to have γ motor neurons (Hunt, 1951; Emonet-Dénand and Laporte, 1975; Murthy, 
1978). The vast majority of efferent projections to mammalian spindles are from γ motor neurons 
(Matthews, 1964; Emonet-Dénand et al., 1992). The independent γ motor supply must therefore 
represent an evolutionary advantage, realized through the ability to dissociate spindle control from 
the control of skeletal muscles, in cases where this dissociation is favorable to the organism (see 
following sections).

Nevertheless, α-γ co-activation can account for the increase in spindle afferent firing observed 
during isometric contraction of the spindle-bearing muscle (Edin and Vallbo, 1990b); β motor neurons 
can also contribute (Kakuda et al., 1998). This increase in spindle firing is congruent with the known 
‘automatic’ gain-scaling of short-latency stretch reflexes (SLRs), where reflex sensitivity is proportional 
to background activation of the homonymous muscle, as shown in postural tasks (e.g. Matthews, 
1986; Pruszynski et al., 2009). However, automatic gain-scaling alone cannot account for the modu-
lation of SLR gains observed during movement (Dufresne et al., 1980; Soechting et al., 1981; Naka-
zawa et al., 1997; Wallace and Miles, 1998). I have recently shown that spindle sensitivity to stretch 
can be positively related to the activity level of the spindle-bearing muscle, but also be negatively 
related to antagonist muscle activity (Dimitriou, 2014). That is, during continuous sinusoidal move-
ments of a finger against different loads, spindle responsiveness to stretch was shown to depend on 
the balance of activity across an antagonistic muscle pair (hence joint dynamics), rather than activity in 
the spindle-bearing muscle alone (Figure 2A). The negative relationship with antagonist activation is 
compatible with top-down reciprocal inhibition of fusimotor neurons, as shown in intercostal muscles 
of the cat (Sears, 1964).

Using an innovative experimental approach, Villamar et al., 2021 have very recently tested the 
hypothesis that SLR sensitivity during movement can be explained by the balance of activity across 
agonist and antagonist muscles. The observed changes in SLR sensitivity during ballistic elbow move-
ments did reflect the net background activity across agonist and antagonist muscles. Moreover, the 
relative impact of agonist and antagonist activity on SLR gain were ‘remarkably similar’ to the coef-
ficients generated by the aforementioned spindle study. Although the contribution of other mecha-
nisms cannot be excluded, taken together, the afferent and stretch reflex results suggest that spindle 
tuning is at least partly responsible for shaping SLR gains during sinusoidal and ballistic movements 
under different loads. The ‘antagonistic’ mode of control demonstrates that spindle sensitivity to 
stretch does not only reflect the state of the homonymous muscle. The spindle response to a phys-
ical stimulus (i.e. the mechanoreceptor signal) can be modulated or ‘processed’ according to the 
contractile state of the spindle-bearing muscle and its antagonists. In the context of sinusoidal and 
ballistic single-joint movement, primary spindles do not seem to function as reliable unimodal sensors 
encoding muscle stretch or joint rotation (Figure 2A). Rather, by integrating mechanical stimulation 
and fusimotor commands, spindles help augment volitional motor control according to the prevalent 
dynamics around a single joint. That is, spindle tuning based on muscle activation balance (i.e. recip-
rocal control) enables even segmental reflex contribution from single muscles to occur in ‘joint space’. 
Future research will determine whether spindle tuning can also reflect multi-joint dynamics.

Independent tuning of muscle spindles in active contexts
As described in the previous section, spindle sensitivity can reflect muscle activation in isometric and 
movement tasks where differential muscle loading is the predominant or defining variable feature. 
However, neither ‘α-γ co-activation’ nor ‘antagonistic muscle balance’ can justify the need for an inde-
pendent fusimotor system. α-linked fusimotor activity could be carried solely by β efferents. So why 
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have we and other mammals evolved γ motor neurons? What is the nature of independent spindle 
tuning? What are the benefits for sensorimotor performance? With existing methodologies, it has 
proven virtually impossible to systematically record from human γ motor neurons. Only one study 
claims to have directly recorded from single γ efferents of immobile humans (Ribot et al., 1986). 
However, recording from individual spindle afferents using microneurography is a feasible and even 
preferable alternative, because γ neurons supply spindles exclusively, and the spindle organ acts as 
an integrator of input from mechanoreception and multiple fusimotor fibers; that is, afferent firing 
also allows assessment of net fusimotor impact, whereas random fusimotor fibers, whose actions sum 
non-linearly, may be less revealing in this respect (Matthews, 1972; Prochazka, 1989). Therefore, one 
way to address the questions above is to record spindle afferent signals during naturalistic movement 
in fundamental sensorimotor tasks.

One such task involves implicit adaptation to a visual distortion (i.e. the classic visuomotor rota-
tion task). In a recent study, participants used their right hand to perform this task while spindle 
afferent signals were recorded from wrist extensor muscles (Dimitriou, 2016). The observed adapta-
tion behavior was stereotypical for this type of task: an exponential curve could be fitted to movement 
direction error in the early adaptation stage and in ‘washout’ (the stage where participants gradually 
re-adapt to removal of the visual distortion). Despite fundamentally identical muscle kinematics across 
all stages of the task, there was a dissociation in spindle population signals as a function of task 
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Figure 2. Human muscle spindle organs are not basic kinematic sensors. (A) Averaged responses of a representative spindle afferent from the 
common digit extensor muscle, during active sinusoidal movements of a single finger at 1Hz (adapted from Figure 3 of Dimitriou, 2014). Movement 
was constrained to the metacarpophalangeal joint (MCP) and occurred under a flexion resistive or assistive torque load, or no external load. Standard 
classification tests identified the afferent as a typical spindle primary (i.e. ‘type Ia’; see Fig 2 in Dimitriou, 2014). Despite virtually identical finger 
flexion, spindle responses to stretch varied according to joint dynamics. (B) Averaged spindle afferent population responses and equivalent muscle 
length changes during the classic visuomotor rotation task (both ‘B’ and ‘C’ adapted from Figure 4A and 4E of Dimitriou, 2016). Grey background 
bars highlight phases in early adaptation (orange) that differ substantially from baseline (black). (C) Correlating the signals shown in ‘B’ (down-sampled 
at 50ms) confirmed a significant relationship in the washout stage. (D) Muscle velocity (null) and changes in spindle Ia responses before movement 
initiation in the classic instructed-delay reaching task with the hand. Ia firing rates from extensor muscles were lower when preparing movement to visual 
targets associated with stretch of the spindle-bearing muscle (purple). ‘D’ and ‘E’ are adapted from Figure 2B and 6A of Papaioannou and Dimitriou, 
2021. (E) Averaged signals across participants; experiments using a robotic manipulandum showed a congruent goal-directed tuning of stretch reflexes, 
including at the short-latency epoch (‘SLR’) in cases where the homonymous muscle was not heavily loaded before perturbation. Color coding as in ‘D’.
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stage. Specifically, compared to baseline, there was an increase in primary muscle spindle sensitivity 
to stretch in early adaptation (Figure 2B) suggesting a similar increase in stretch reflex gains as a 
means of reducing movement error online. In the washout stage, spindle afferents (Ia and II) stopped 
encoding stretch velocity and were instead ‘linearized’ with respect to muscle length (Figure 2BC, 
green). That is, spindle signals were tuned to hand position only during washout, possibly for facili-
tating the relevant update of internal models in this stage, where haptic and visual coordinate frames 
re-align.

In the visuomotor adaptation task, muscle spindles were flexibly tuned according to the need to 
adapt and the congruence between haptic and visual coordinate frames. A follow-up study applied 
whole-arm perturbations during probe trials that were randomly interleaved at the different stages of 
the implicit adaptation task; the study produced equivalent findings concerning stretch reflex tuning, 
including evidence that levels of SLR attenuation in washout (a proxy for spindle ‘linearization’) reflect 
individual rates of implicit adaptation (Dimitriou, 2018). It is believed that flexible and adaptive 
motor control can rely on statistically optimal integration of multimodal sensory inputs (e.g. Körding 
and Wolpert, 2004; Bays and Wolpert, 2007). For reaching movements, proprioceptive and visual 
information are thought to be weighted according to their direction-dependent precision (van Beers 
et al., 1999). Another line of research suggests that the brain constructs flexible coordinate repre-
sentations depending on task needs and characteristics (Bernier and Grafton, 2010; McGuire and 
Sabes, 2011; Leoné et al., 2015), although the required coordinate transformations are considered 
costly due error and noise in the underlying computations (Soechting and Flanders, 1989; Sober and 
Sabes, 2005; Schlicht and Schrater, 2007). By siphoning multimodal information to the periphery in 
order to construct flexible representations at source, spindles and their fusimotor control may help 
alleviate some of the cost associated with internal coordinate transformations.

Another well-studied experimental paradigm is the instructed-delay reach, where there is a delay 
between a target cue and a ‘Go’ signal to move. This delay is designed to investigate movement 
preparation. Having a long-enough preparatory delay improves the overall quality of movement and 
cuts down on reaction time (Rosenbaum, 1980; Ghez et al., 1997; Sutter et al., 2021). Preparatory 
cortical activity correlates well with parameters such as movement direction/extent and visual target 
location (Tanji and Evarts, 1976; Weinrich et al., 1984; Kurata, 1993; Shen and Alexander, 1997). 
It was initially suggested that preparatory cortical activity represents a subthreshold version of the 
activity seen during movement, but more recent work suggests that preparation sets an initial neural 
state that somehow facilitates the subsequent movement (Churchland et al., 2010). In a recent study 
(Papaioannou and Dimitriou, 2021), we demonstrate goal-directed tuning of muscle spindles and 
stretch reflex gains during movement preparation. Specifically, despite no differences in kinematics 
or surface EMG during preparation, type Ia firing rates were lower when preparing to reach targets 
associated with stretch of the spindle-bearing muscle (Figure 2D). That is, spindle responses can also 
be flexibly adjusted according to ‘extrinsic’ visual information about target location. These findings 
are congruent with recent reports of preparatory modulation in the primary somatosensory cortex 
(Ariani et al., 2022; Gale et al., 2021), but suggest that such preparatory changes in the CNS may be 
partially due to processing altered afferent signals, rather than exclusively reflect internally-generated 
commands or priming.

We also found a strong positive relationship between type Ia firing during late preparation and 
time-to-peak velocity during reaching, suggesting that spindle preparatory tuning has a substantial 
impact on the subsequent voluntary movement (Papaioannou and Dimitriou, 2021); every additional 
unit increase in Ia firing rate involved a 3ms delay in attaining peak velocity during movement. This 
relationship can be understood in terms of the spindle’s role in stretch reflexes. By independently 
modifying spindle gains, the fusimotor system can affect the degree of reflex muscle stiffness during 
movement execution, without affecting contractile muscle force during preparation. Modulating the 
level of reflex stiffness in a goal-appropriate manner can facilitate the execution of planned reaching 
movements. Muscle afferent (reflex) feedback contributes significantly to force generation, about 
a third of volitional contraction (Hagbarth et  al., 1986; Gandevia et  al., 1990), regardless if the 
contraction is maximal or not (Macefield et al., 1993).

It is known that spindle Ia signals can also affect long-latency stretch reflex responses - LLRs (e.g. 
Hunter et al., 1988; Fellows et al., 1993; Pruszynski and Scott, 2012). Additional experiments impli-
cating whole-arm perturbations confirmed that goal-directed tuning of type Ia responses reflected a 

https://doi.org/10.7554/eLife.78091
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congruent modulation of stretch reflex gains at all latencies, including at SLR latencies in cases where 
the muscle was not heavily pre-loaded (Figure 2E). LLR gains exhibited goal-dependency regard-
less of muscle pre-loading level (Papaioannou and Dimitriou, 2021). The same study demonstrated 
that goal-directed modulation of LLR gains was stronger following a long rather than a relatively 
short preparatory delay, closely matching the temporal evolution of spindle preparatory tuning. More-
over, the used ‘short’ preparatory delay (200–250 ms) is considerably longer than the minimum delay 
required for shaping LLR responses via selective CNS processing (e.g. Yang et al., 2011; Scott, 2016), 
but shorter than the time required for full afferent expression of changes in dynamic fusimotor drive 
(Crowe and Matthews, 1964). Future work will determine whether spindle tuning helps control reflex 
muscle stiffness across different tasks (such as object interception), and further clarify how muscle 
loading relates to possible independent tuning of spindles. For example, one approach could involve 
examining spindle afferent responses during dynamic (‘force-field’) learning (Shadmehr and Mussa-
Ivaldi, 1994).

Nevertheless, in planned voluntary reach, spindle responses to stretch can be locally adjusted (or 
‘processed’) according to the intention to move in a particular direction (Figure 2D). That is, tuning 
of human spindles can reflect specific goals within a behavioral context (reaching), which represents 
a finer degree of spindle modulation than tuning according to behavioral context or type of task, as 
previously and more recently suggested (Prochazka et al., 1985; Ribot-Ciscar and Ackerley, 2021). 
One study found no evidence of a selective effect on fusimotor neurons when anticipating the need to 
make a contraction that would oppose an imposed movement of the foot at the ankle (Burke et al., 
1980). However, our 2021 study was the first to implicate true reaching intention and action. In this 
case, the intention to perform a voluntary goal-directed movement may be necessary for engaging 
independent fusimotor control.

It should be emphasized that all findings described in Figure 2 involve control of the dominant 
upper limb. It is possible that there is a large degree of functional specialization in the fusimotor 
control of upper vs. lower limbs. Most of what we know concerning mammalian muscle spindle 
structure and fusimotor function has come from work with cats (e.g. Barker, 1948; Matthews, 1972; 
Hulliger, 1984), and many inferences we currently make concerning human fusimotor control would 
have been impossible without this work. For example, such research has shown that there are two 
independently controlled groups of γ motor neurons, ‘static’ and ‘dynamic’, with the latter inner-
vating only primary muscle spindles (Matthews, 1962). In active cats, fusimotor and spindle activity 
has been most thoroughly examined in the context of locomotion (see e.g. Prochazka, 1996). Equiv-
alent data during human locomotion are lacking due to methodological limitations. Mathematical 
modelling suggests that fusimotor control optimizes the spindles’ ability to encode position sense 
by accounting for the presence of musculoskeletal complexities and output noise (Scott and Loeb, 
1994). However, another prominent line of work suggests that spindles are not length detectors, 
but instead are independently controlled in a predictive manner in order to modulate the func-
tion of spinal central pattern generator (CPG) circuits during locomotion (Ellaway et al., 2015). A 
similar fusimotor support of human bipedal locomotion may occur, although it is currently unclear 
whether CPG networks exist in the human spinal cord (Minassian et al., 2017). Recordings from 
humans have also suggested a more predictive role for spindle signals. In one paper, we correlated 
spindle population responses recorded during block-grasping and key-pressing with muscle velocity 
occurring at the same time as the recorded afferent signal, and velocity observed at different points 
into the future (Dimitriou and Edin, 2010). The closest relationship was between afferent firing 
rate and velocity ~150ms after the spindle signal. This result meant that muscle spindles fulfilled all 
three neurophysiological criteria for identifying a forward sensory model (Wolpert and Miall, 1996): 
spindle inputs were the current state of the system (mechanoreception) and an efferent command (β 
or α-γ), and spindle output predicted the future kinematic state. However, later studies showed that 
the spindles’ ‘predictive’ capacity does not hold across tasks. For example, if anything, the opposite 
results should have been observed in preparatory modulation (e.g., Figure 2D), and suddenly adding 
a new external load did not significantly alter the predictive capacity of spindles during the initial 
cycles of sinusoidal movement (Dimitriou, 2014). To identify forward sensory models, one could 
perhaps add a fourth criterion stating that forward models should make worse predictions in novel 
contexts.

https://doi.org/10.7554/eLife.78091
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Peripheral control of spindle sensitivity
Prominent theories of spindle and fusimotor control have not incorporated the possibility of substan-
tial afferent influence on fusimotor neurons. Peripheral (‘reflexive’) input to γ neurons, including from 
cutaneous afferents, has been mainly demonstrated using electrical nerve stimulation in anaesthetized 
cats (Appelberg et al., 1977; Johansson and Sojka, 1985; Johansson et al., 1986). These findings 
reinforce the idea that pools of γ motor neurons should be considered as an integrative system able 
to combine sensorimotor ‘apples and oranges’, that is, descending commands and peripheral multi-
sensory information.

A functional degree of peripheral multisensory integration – such as for dexterous object manip-
ulation – may be possible at the level of the spindle as a result of afferent control of γ neurons. This 
hypothesis is compatible with evidence of ‘multimodal’ signals (tactile-proprioceptive) already in area 
3a of the somatosensory cortex (Kim et al., 2015). However, so far, cutaneous stimulation has been 
shown to have a limited impact in two studies of spindle afferent activity in passive humans (Aniss 
et al., 1990; Gandevia et al., 1994). But afferent control of spindle sensitivity may prove stronger 
or more easily unmasked in the active individual (e.g. due to higher background tonus). The specific 
functional advantage of having such afferent connections is currently unclear. One previous study has 
demonstrated edge-orientation processing in tactile neurons as a function of their receptive fields 
(Pruszynski and Johansson, 2014). However, in this case, cutaneous afferent signals were bound to 
the characteristics (edge-orientation) of the ‘adequate’ physical stimulus. In contrast, muscle spindle 
output can potentially be modulated according to the characteristics of a physical stimulus in another 
modality (e.g. cutaneous), via efferent control. Although top-down control alone supports the notion 
that spindles are best viewed as flexible signal-processing devices rather than basic mechanorecep-
tors (Figure 1B and Figure 2), the possibility of substantial peripheral control of fusimotor neurons 
adds another layer of support to this proposition.

While fusimotor innervation can allow spindles to function as controllable signal-processors, 
peripheral modulation of spindle sensitivity may be also enabled by the structure of these encap-
sulated organs. It has long been known in microneurography circles that percutaneous mechanical 
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Figure 3. Percutaneous mechanical pressure near the spindle capsule affects encoding of active movement. 
Responses of a spindle afferent from a wrist extensor muscle while the participant continuously moved their right 
semipronated hand about the wrist (flexion-extension; 0° denotes alignment with forearm). A hand-held probe was 
used by the experimenter for applying and measuring mechanical pressure over a small area of skin on the forearm 
(5 mm probe tip diameter), near the spindle capsule, during some movement cycles only (grey vertical bar denotes 
stimulus removal). Throughout, the participant’s gaze was directed at a monitor displaying a cursor that tracked 
hand movement. Despite very similar hand movement and activation patterns of the spindle-bearing muscle 
(‘EMG’), spindle responses to hand flexion were markedly stronger during percutaneous pressure.
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pressure applied near the spindle capsule, likely 
leading to its compression, can have some effect 
on spindle afferent firing. Such mechanical pres-
sure can otherwise represent an ecologically valid 
stimulus, brought on by increased intramuscular 
pressure due to active contraction or simply mate-
rialize when muscles are palpated. Representative 
preliminary data from our lab indicate that, regard-
less of underlying mechanism, spindle afferent 
responses to active movement are substantially 
affected by light-to-moderate percutaneous pres-
sure applied near the spindle capsule (Figure 3). 
It is tempting to speculate as to the potential 
regulatory function of such peripheral modula-
tion, especially in the context of recent findings 
that intramuscular fluid pressure can have imme-
diate and significant effects on contractile muscle 
force (Sleboda and Roberts, 2020). Neverthe-
less, the preliminary findings in Figure 3 serve as 
yet another indication that spindles are inclined 
to produce flexible representations rather than a 
consistent picture of actual limb kinematics.

Concluding remarks
I propose that muscle spindle organs are versa-
tile signal-processing devices whose overarching 
role is to facilitate sensorimotor performance 
according to task characteristics, rather than 
faithfully encode posture and movement. Here, I 
have outlined recent evidence that spindle tuning 
can enable the independent preparatory control 
of muscle compliance, the selective extraction of 
information during implicit motor adaptation, and 
for segmental stretch reflexes to operate in joint 
space. The complete spindle repertoire remains 
to be revealed. Of particular interest is the ability 
of spindles to act as conduits of multimodal 
information. The fusimotor neurons controlling 
spindles can integrate multisensory peripheral 
input and top-down commands (which can also 
reflect sensory events, e.g. in vision; Figure 2D). 
It is reasonable to think of fusimotor activity as an 
intermediate coordinate transformation enabling 
different information to converge on spindles, 
generating flexible coordinate representations at 
level of the PNS (Figure 4). Such dimensionality 
reduction may potentially simplify motor control 
without limiting performance. A more flexible 
and central role for spindles justifies the premium 
placed on their control by the nervous system (i.e. 
~30% of lower motor neurons are γ). Such a role is also compatible with the seemingly large number 
of parameters found to correlate closely with motor and premotor neural activity, and with models 
that claim the motor cortex essentially operates in ‘proprioceptive’ coordinates (Adams et al., 2013).

Consistent information about actual limb position and movement kinematics is also necessary. It is 
widely believed that how we sense our body, including its position and movement, depends on the 
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Figure 4. Advanced signal-processing at the level 
of muscle spindle organs. In addition to descending 
commands to skeletal muscles and an efferent copy to 
forward models (Figure 1A), there can be independent 
descending control of γ dynamic (‘γd’) and γ static (‘γs’) 
spinal motor neurons. The vast majority of efferent 
projections to spindles are from γ motor (‘fusimotor’) 
neurons, but there is also some β supply (indicated 
by the thinner dashed line). Fusimotor control can 
affect spindle output in the absence of mechanical 
stimulation (e.g. muscle stretch), but fusimotor activity 
can also shape spindle responses to direct mechanical 
stimulation arising from own action or the external 
environment. ‘*’: γd project only to primary muscle 
spindles, allowing for differential control of primary 
and secondary muscle spindles. Electrophysiological 
studies in mammals have also demonstrated 
multisensory afferent convergence onto fusimotor 
neurons. ‘**’: The specific impact of afferent control 
of fusimotor neurons has not been determined yet 
in the active human, and may well vary across body 
segments e.g., stronger in the hand and/or the foot. In 
this model, joint and cutaneous receptors (and vision) 
provide consistent/reliable information about actual 
bodily state, and potentially so do spindles, e.g., if 
they are predominantly affected by direct mechanical 
stimulation (as in the case of the passive, unengaged 
individual). But here, fusimotor activity represents an 
intermediate coordinate transformation that allows 
multimodal information to converge on spindles, 
creating flexible representations at the periphery. So 
far, spindle tuning has been shown to facilitate load 
compensation in joint space, the selective extraction 
of information during motor adaptation, and the 
independent preparatory adjustment of reflexive 
muscle stiffness before goal-directed reaching 
(Figure 2).
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interplay of multimodal signals (e.g. Makin et al., 2008; Proske and Gandevia, 2012). While spindles 
can encode limb position preferentially in certain contexts (e.g. Figure 2C), vision, joint and cutaneous 
signals also contribute to proprioception and kinesthesia (Collins and Prochazka, 1996; Collins et al., 
2005; Sarlegna and Sainburg, 2009). Both a flexible role for spindles and multimodal contributions 
to proprioception are supported by the general model proposed here (Figure 4). Interestingly, it is 
known that direct electrical stimulation of single joint and cutaneous afferents evokes appropriate 
sensations, but stimulation of single spindle afferents does not lead to any conscious sensations in 
the absence of movement (Macefield et al., 1990). Tendon vibration (artificial spindle stimulus) of the 
unseen limb can lead to illusory perception of physically impossible limb configurations, and seeing 
the vibrated limb strongly attenuates illusory motion (Lackner and Taublieb, 1984). If spindles are 
not routinely tasked with providing a faithful representation of posture and limb kinematics (i.e., not 
tasked with encoding the consequences of action), spindle tuning can instead emphasize the flex-
ible facilitation of concurrent or future action. While recording from human afferents and performing 
follow-up behavioral studies has helped shape our understanding of spindle function, elucidating the 
underlying mechanisms in more detail will require much more work on multiple fronts. For example, 
predictions stemming from human afferent data concerning fusimotor function can be tested more 
freely in animal models, using a range of modern techniques, as recently emphasized (Wilkinson, 
2021). Achieving a comprehensive account of spindle contribution will likely also advance our under-
standing of core sensorimotor principles.

Open questions

1.	 Does the nervous system tune muscle spindles according to multi-joint dynamics?
2.	 Beyond planned reaching, does independent tuning of spindles help control muscle compliance 

across different tasks (e.g., object interception)?
3.	 In terms of task-relevant flexibility, how different is the tuning of primary and secondary muscle 

spindle receptors?
4.	 Given the peripheral afferent input to fusimotor neurons, does cutaneous stimulation have a 

significant impact on spindle sensitivity in the active human? What are the benefits for sensori-
motor performance e.g., in terms of the dexterous manipulation of objects?

5.	 Is there substantial functional specialization in spindle tuning across human upper and lower 
limbs (e.g. in the degree of cutaneous modulation), and if so, what is its purpose? Similarly, are 
there differences in spindle control between the dominant and non-dominant limb, and can 
such differences account for discrepancies in sensorimotor performance?

6.	 Which brain areas and descending pathways are involved in fusimotor control during e.g., 
movement preparation?
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