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Limberg JK, Ott EP, Holbein WW, Baker SE, Curry TB,
Nicholson WT, Joyner MJ, Shoemaker JK. Pharmacological
assessment of the contribution of the arterial baroreflex to sympa-
thetic discharge patterns in healthy humans. J Neurophysiol 119:
2166–2175, 2018. First published February 28, 2018; doi:10.1152/
jn.00935.2017.—To study how changes in baroreceptor afferent activity
affect patterns of sympathetic neural activation, we manipulated arterial
blood pressure with intravenous nitroprusside (NTP) and phenylephrine
(PE) and measured action potential (AP) patterns with wavelet-based
methodology. We hypothesized that 1) baroreflex unloading (NTP)
would increase firing of low-threshold axons and recruitment of latent
axons and 2) baroreflex loading (PE) would decrease firing of low-
threshold axons. Heart rate (HR, ECG), arterial blood pressure (BP,
brachial catheter), and muscle sympathetic nerve activity (MSNA, mi-
croneurography of peroneal nerve) were measured at baseline and during
steady-state systemic, intravenous NTP (0.5–1.2 �g·kg�1·min�1, n �
13) or PE (0.2–1.0 �g·kg�1·min�1, n � 9) infusion. BP decreased and
HR and integrated MSNA increased with NTP (P � 0.01). AP
incidence (326 � 66 to 579 � 129 APs/100 heartbeats) and AP con-
tent per integrated burst (8 � 1 to 11 � 2 APs/burst) increased with
NTP (P � 0.05). The firing probability of low-threshold axons
increased with NTP, and recruitment of high-threshold axons was
observed (22 � 3 to 24 � 3 max cluster number, 9 � 1 to 11 � 1
clusters/burst; P � 0.05). BP increased and HR and integrated MSNA
decreased with PE (P � 0.05). PE decreased AP incidence
(406 � 128 to 166 � 42 APs/100 heartbeats) and resulted in fewer
unique clusters (15 � 2 to 9 � 1 max cluster number, P � 0.05);
components of an integrated burst (APs or clusters per burst) were not
altered (P � 0.05). These data support a hierarchical pattern of
sympathetic neural activation during manipulation of baroreceptor
afferent activity, with rate coding of active neurons playing the
predominant role and recruitment/derecruitment of higher-threshold
units occurring with steady-state hypotensive stress.

NEW & NOTEWORTHY To study how changes in baroreceptor
afferent activity affect patterns of sympathetic neural activation, we
manipulated arterial blood pressure with intravenous nitroprusside
and phenylephrine and measured sympathetic outflow with wavelet-
based methodology. Baroreflex unloading increased sympathetic ac-
tivity by increasing firing probability of low-threshold axons (rate
coding) and recruiting new populations of high-threshold axons.

Baroreflex loading decreased sympathetic activity by decreasing the
firing probability of larger axons (derecruitment); however, the com-
ponents of an integrated burst were unaffected.

baroreflex; microneurography; modified Oxford technique; sympa-
thetic outflow

INTRODUCTION

Sympathetic neural recordings obtained from skeletal mus-
cle in humans [via the technique of microneurography (Vallbo
et al. 1979; Salmanpour et al. 2010)] are often rectified and
integrated to give multiunit muscle sympathetic nerve activity
(MSNA) “bursts” that represent activity of several axons re-
corded simultaneously. With this, a fundamental question in
motor unit physiology (Adrian and Bronk 1929; Henneman
1957) has also emerged in sympathetic nervous system activ-
ity: Are increases in the incidence and/or size of multiunit
integrated MSNA bursts the result of an increased firing rate of
previously active neurons [rate coding (Macefield and Wallin
1999; Salmanpour et al. 2011a)] and/or recruitment of addi-
tional neurons (Badrov et al. 2015; Steinback et al. 2010b;
Wallin et al. 1994)? The frequency of neural discharge deter-
mines neurotransmitter release patterns (Lambert et al. 2011),
and the number of active neurons can vary with each inte-
grated, multiunit MSNA burst (Macefield and Elam 2003). In
this way, altered sympathetic neuronal firing patterns may have
consequences in the cardiovascular system that are not detected
with integrated MSNA recordings.

The activity of the sympathetic nervous system can vary
significantly when blood pressure increases and decreases.
Despite robust alterations in sympathetic activity with manip-
ulation of baroreceptor afferent activity, changes in blood
pressure are more closely related to integrated, multiunit
MSNA burst occurrence than burst size (Kienbaum et al.
2001). These data led researchers to hypothesize that the baro-
reflex is more important in determining whether a sympathetic
burst occurs, while another unknown factor determines the num-
ber of axons recruited (Keller et al. 2006; Kienbaum et al. 2001;
Malpas 2010). Consistent with this concept, Salmanpour and
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colleagues used wavelet-based methodology to show that small to
medium-sized, low-threshold axons were present in most inte-
grated, multiunit MSNA bursts at baseline and increased their
firing rates during orthostatic stress (Salmanpour et al. 2011a,
2011b; Salmanpour and Shoemaker 2012). In contrast, the authors
found that larger, faster-conducting axons had a low probability of
firing at baseline and were minimally affected by baroreceptor
pathways engaged during moderate orthostatic stress (Salmanpour
et al. 2011a; Salmanpour and Shoemaker 2012).

These recent results support a relatively small impact of
moderate lower body suction on sympathetic action potential
(AP) recruitment, compared with other reflexes (Steinback et
al. 2010a, 2010b). In contrast, during more severe orthostasis
(�80-mmHg lower body negative pressure), the majority of
individuals studied recruited a new population of larger-am-
plitude, faster-conducting postganglionic axons (Badrov et al.
2015; Salmanpour et al. 2011a). However, until now, the study
of baroreflex control of MSNA AP recruitment has occurred
under stable baseline conditions and/or during nonhypotensive
lower body negative pressure, where the baroreflex stimulus for
elevations in MSNA involves changes in pulse pressure but little
change in diastolic or mean pressures. To advance our understand-
ing of the contribution of the baroreflex to sympathetic discharge
patterns in humans, we systematically manipulated arterial blood
pressure by using intravenous nitroprusside and phenylephrine to
elicit a large range of primarily arterial baroreflex stress and
measured sympathetic outflow with wavelet-based methodology
(Salmanpour et al. 2010). We hypothesized that baroreflex un-
loading with nitroprusside would increase firing of low-threshold
axons (rate coding) and would recruit latent axons. We further
hypothesized that baroreflex loading with phenylephrine would
decrease firing of low-threshold axons.

METHODS

Research subjects. All subjects were 18- to 45-yr-old, healthy (no
acute or chronic conditions) nonsmokers with a body mass index �30
kg/m2 and not taking any medications. All experiments were per-
formed in the Clinical Research and Trials Unit (CRTU) at Mayo
Clinic, were approved by the Institutional Review Board at the Mayo
Clinic, and conformed to the Declaration of Helsinki. On a screening
visit, each subject gave written informed consent, followed by a
review of medical history and a brief physical exam performed by a
laboratory physician that included baseline measurements of height,
weight, blood pressure, and heart rate.

Instrumentation. On the study day, subjects arrived at the labora-
tory after a 4-h fast and after abstaining from exercise, caffeine, and
alcohol for at least 24 h. Subjects were semirecumbent and were
instrumented with a three-lead electrocardiogram to measure heart
rate (Cardiocap/5; Datex-Ohmeda) and a nose clip/mouthpiece con-
nected to a turbine for measurements of respiratory rate and tidal
volume (Universal Ventilation Meter; Vacumetrics). A 20-gauge,
5-cm catheter was placed in the brachial artery under aseptic condi-
tions after local anesthesia (2% lidocaine) to measure arterial blood
pressure and for periodic blood sampling (epinephrine, norepineph-
rine). Standard blood assays were performed by the Immunochemistry
Core Laboratory of the CRTU of the Mayo Clinic Center for Clinical
and Translational Science.

Resting MSNA was recorded with the technique of microneurog-
raphy (Salmanpour et al. 2010; Vallbo et al. 1979). Multiunit MSNA
was recorded with a tungsten microelectrode (200-�m shaft diameter
tapering to 1–5 �m at the uninsulated tip, 2.0 � 0.4 M impedance;
FHC, Bowdoin, ME) placed percutaneously into the peroneal nerve,
posterior to the fibular head under direct two-dimensional live ultra-

sound guidance with a 12–15 MHz linear probe (Curry and Chark-
oudian 2011). A reference electrode was positioned subcutaneously
~4 cm from the recording electrode. The recorded signal was ampli-
fied 80,000-fold, band-pass filtered (700–2,000 Hz), rectified, and
integrated (resistance-capacitance integrator circuit, time constant
0.1 s) by a nerve traffic analyzer (662C-3; Dept. of Bioengineering,
University of Iowa). Sympathetic bursts in the integrated neurogram
were identified with a custom-manufactured automated analysis pro-
gram (Salmanpour et al. 2010). Multiunit MSNA is reported as bursts
per minute (burst frequency), bursts per 100 heartbeats (burst inci-
dence), and burst area (arbitrary units per min). Only sections of data
without ectopic beats were included in the analysis.

Action potential detection and analysis. AP patterns were detected
and extracted with wavelet-based methodology on the raw, band-pass-
filtered neurogram (Salmanpour et al. 2010). Briefly, a continuous
wavelet transform using a “mother wavelet” with the same morphol-
ogy as a physiological postganglionic sympathetic AP was used for
AP detection (Salmanpour et al. 2010). The continuous wavelet
transform with the matched mother wavelet was applied to the filtered
MSNA signal to provide a wavelet coefficient between the AP of
interest and the mother wavelet such that the wavelet coefficient was
largest in the presence of the APs and negligible when applied to
noise. Wavelet coefficients related to APs and noise were separated on
the basis of thresholding analysis (Salmanpour et al. 2010). Extracted
APs were grouped as overlapped (summated signal of 2 co-occurring
APs) or single APs, based on their morphology. Nonoverlapped APs
were ordered on the basis of peak-to-peak amplitude (32-point k-
means), and histogram analysis was performed to separate APs into
amplitude-based clusters based on Scott’s rule (Scott 1979; proposes
optimal histogram bin width based on the sample size and an estimate
of the standard deviation of the data). The number of AP clusters in
the neurogram varied between maneuvers. Thus bin characteristics
(minimum histogram bin width, maximum bin center, and total
number of bins) were normalized within each individual to ensure that
corresponding clusters at baseline and pharmacological intervention
contained APs with similar peak-to-peak amplitudes (Badrov et al.
2015). With this, an increase in the number of clusters is considered
equal to increased recruitment of additional populations of neurons.

Outcome variables include APs per burst (reflecting firing rate),
clusters per burst (reflecting recruitment), and conduction latency of
each cluster (reflecting synaptic delays and verifying large amplitude
clusters as new populations). Conduction latency was calculated as the
time delay between the R wave of the electrocardiogram of the
preceding cardiac cycle and the negative peak of the AP waveform.
Because the number of total clusters varies by individual, each
participants’ number of total clusters was normalized to 10 total
clusters with methods published previously (Badrov et al. 2015). In
this way, each cluster group contained a 10% range of the largest
detected cluster (which was given a value of 100%). For example,
cluster 0–10% contained an average of all cluster numbers that were
0–10% of the largest cluster (Badrov et al. 2015).

Intravenous infusions. An intravenous catheter was placed under
local anesthesia for systemic intravenous infusion of nitroprusside and
phenylephrine, administered separately. Nitroprusside (nitric oxide
donor) was infused intravenously after 3 min of quiet rest at an
individualized dose (0.5–1.2 �g·kg�1·min�1) intended to achieve a
blood pressure fall of 10 mmHg (Grassi et al. 1995, 2004, 2005;
Grossman et al. 1991; Heindl et al. 2006). Phenylephrine (�1-adren-
ergic agonist) was infused intravenously after 3 min of quiet rest at a
range of doses (0.2–1.0 �g·kg�1·min�1) selected to achieve varied
levels of baroreceptor activity (Cui et al. 2002; Heindl et al. 2006;
Wilkins et al. 2008). For example, 1.5 �g·kg�1·min�1 has been
shown to increase mean blood pressure ~15 mmHg and silence
MSNA via baroreceptor loading (Cui et al. 2002; Wehrwein et al.
2010). In contrast, low doses of phenylephrine (0.1 �g·kg�1·min�1)
may increase blood pressure only slightly (~1 mmHg) (Wilkins et al.
2008). With such small changes in baroreceptor stretch changes in
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multiunit MSNA may be undetectable, but changes in the firing of
individual axons may be observed with the AP analysis approach.

Study visit. Subjects completed two protocols separated by a
minimum of 30 min. Protocol order was randomized and counterbal-
anced. For each protocol, respiratory rate was held at baseline levels
with a metronome. Protocol 1 consisted of intravenous infusion of
sodium nitroprusside. All individuals started at a dose of 0.8

�g·kg�1·min�1, which was increased 0.1 �g·kg�1·min�1 every 2–3
min until a 10-mmHg fall in blood pressure and an increase in MSNA
were observed. If blood pressure fell �10 mmHg, the nitroprusside
dose was reduced in 0.1 �g·kg�1·min�1 increments until a stable
10-mmHg fall in blood pressure was reached (time to achieve desired
effect � 6.2 � 1.1 min; average final dose 0.90 � 0.05 �g·
kg�1·min�1). Data are reported as a 5-min average during the final
dose (total infusion time � 11.3 � 1.1 min).

Protocol 2 consisted of intravenous infusion of phenylephrine at
0.2 �g·kg�1·min�1 for 3 min. The dose of phenylephrine was
increased by 0.2 �g·kg�1·min�1 every 3 min until arterial blood
pressure was increased 5–10 mmHg and multiunit MSNA signal was
silenced. After the final 3-min infusion, phenylephrine infusion was
stopped and the MSNA signal was allowed to return, ensuring that the
fall in MSNA was not the result of signal decay. Data are reported as
a 3-min average during the final dose (phenylephrine dose 2, range
0.4–1.0, average 0.62 � 0.08) and during approximately half of the
maximum dose (phenylephrine dose 1, range 0.2– 0.6, average
0.29 � 0.05).

Three individuals from protocol 1 and six naive individuals were
recruited to complete a third protocol. On a separate study day,
subjects arrived to the laboratory after a 12-h fast and after abstaining
from exercise, caffeine, and alcohol for at least 24 h. In the three
returning individuals, visits were separated by 18 � 2 mo (range
14–20 mo). Instrumentation for protocol 3 was identical to protocols
1 and 2, although subjects wore a mask rather than a nose clip/
mouthpiece and respiratory rate was not controlled. After instrumen-
tation, individuals completed a 5-min quiet resting period. An intra-
venous bolus of sodium nitroprusside (100 �g) was then administered,
followed by an intravenous bolus of phenylephrine (150 �g) (modi-
fied Oxford technique) (Ebert 1990; Rudas et al. 1999; Smyth et al.
1969). This approach is currently considered the “gold standard” to
examine sensitivity of the arterial baroreflex (Rudas et al. 1999). By
incorporating the modified Oxford technique, we are able to examine
the robustness of observations made under more transient decreases/
increases in blood pressure. Data are reported as an average during the
last 1 min of rest; after nitroprusside infusion, when blood pressure

Table 1. Cardiorespiratory and sympathetic responses to
systemic nitroprusside

Baseline Nitroprusside

Heart rate, beats/min 61 � 2 80 � 3*
Systolic blood pressure, mmHg 146 � 3 136 � 4*
Diastolic blood pressure, mmHg 77 � 2 73 � 2*
Mean blood pressure, mmHg 99 � 2 91 � 2*
Respiratory rate, breaths/min 11 � 1 11 � 1
Tidal volume, l/breath 0.70 � 0.14 0.81 � 0.16
Minute ventilation, ml/min 6.7 � 0.8 7.9 � 1.0
Epinephrine, pg/ml 67 � 11 82 � 16
Norepinephrine, pg/ml 174 � 14 215 � 26
Burst frequency, bursts/min 25 � 3 41 � 3*
Burst incidence, bursts/100 heartbeats 41 � 5 53 � 4*
Mean burst area, AU/min 1.4 � 0.2 2.8 � 0.4*
Action potential frequency, APs/min 191 � 35 439 � 90*
Action potential incidence, APs/burst 8 � 1 11 � 2*
Action potential incidence, APs/100

heartbeats 326 � 66 579 � 129*
Mean cluster incidence, clusters/burst 4.5 � 0.5 5.5 � 0.7*
Max cluster incidence, clusters/burst 9.5 � 1.0 10.9 � 1.0*
Max cluster number 21.6 � 2.7 24.4 � 3.0*

Data are means � SE from n � 13. Average final dose was 0.90 � 0.05
�g·kg�1·min�1. Data were analyzed with a 1-way repeated-measures
ANOVA. Normality was assessed with the Shapiro-Wilk test. If not normally
distributed, a Friedman repeated-measures ANOVA on ranks was conducted
[respiratory rate, minute ventilation, action potential (AP) incidence (APs/
burst), max cluster number]. AU, arbitrary units. Pairwise comparisons were
done with the Holm-Sidak method. *P � 0.05 vs. baseline.
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Fig. 1. Representative sample of data from 1 subject (26 yr, 21 kg/m2) collected at baseline and during steady-state nitroprusside infusion (1.1 �g·kg�1·min�1).
MBP, mean blood pressure.
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was falling; and during the subsequent phenylephrine infusion, when
blood pressure was increasing but MSNA integrated bursts could still
be detected.

Data analysis. Data were recorded at 10,000 Hz with a computer
data acquisition system (PowerLab; ADInstruments) and stored for
off-line analysis (Salmanpour et al. 2010). Statistical analyses were
conducted with SigmaPlot version 14.0 (Systat Software). Data pre-
sented in Tables 1–3 were analyzed by using a one-way repeated-
measures analysis of variance (ANOVA) to determine the main effect
of condition (baseline, drug) on main outcome variables. Normality
was assessed with the Shapiro-Wilk test. If not normally distributed,
a Friedman repeated-measures ANOVA on ranks was conducted.
Pairwise comparisons were done by the Holm-Sidak method. Data
presented in Figs. 2, 4, 6, and 7 were analyzed by using a two-way
repeated-measures ANOVA to determine the main effect of relative
cluster size (10–100% of total clusters) and condition (baseline, drug)
and the interaction of cluster and condition. Pairwise comparisons
were done with the Holm-Sidak method. All data are presented as
means � SE. P values �0.05 were considered statistically significant.

RESULTS

Subject demographics. The initial protocol recruited 19
individuals, of which high-quality nerve recordings were made
in 14 individuals. Thirteen male subjects (30 � 2 yr, 181 � 2
cm, 82 � 3 kg, 25 � 1 kg/m2) successfully completed protocol
1 (1 subject was excluded because of failure to achieve desired
fall in blood pressure). Of those 13 individuals, 9 individuals
successfully completed protocol 2 (30 � 2 yr, 181 � 2 cm,
82 � 3 kg, 25 � 1 kg/m2) (data from 4 individuals were
excluded because of shifts in the MSNA baseline during the
infusion protocol). Three individuals returned for a second visit
to complete protocol 3. An additional six male subjects were
recruited to complete protocol 3 only (n � 9 total; 31 � 2 yr,
183 � 2 cm, 89 � 3 kg, 26 � 1 kg/m2).

Nitroprusside. Compared with baseline, blood pressure de-
creased and heart rate increased with nitroprusside (P � 0.01;
Table 1 and Fig. 1). Nitroprusside elicited a progressive in-
crease in integrated MSNA bursts (P � 0.01; Table 1 and Fig.
1). Underlying nitroprusside-mediated increases in integrated
MSNA were increases in neuronal discharge rate (APs/min,
APs/100 heartbeats) and AP content per integrated burst (P �
0.05; Table 1). The probability of APs from the same cluster
firing once per integrated MSNA burst (single firing; Fig. 2A)
and more than once per burst (multiple firing; Fig. 2B) in-
creased with nitroprusside, and recruitment of latent, high-
threshold axons was observed (max cluster number; max clus-
ters/burst) (P � 0.05 for all; Table 1).

Phenylephrine. No changes in neuronal recruitment and/or
firing patterns were observed at the lower dose (dose 1) of
phenylephrine, despite an ~2-mmHg increase in diastolic blood
pressure (Table 2). Compared with baseline, blood pressure
increased and heart rate decreased with the highest dose (dose
2) of phenylephrine (P � 0.01; Table 2 and Fig. 3). The highest
dose of phenylephrine elicited a reduction in integrated MSNA
(P � 0.05; Table 2 and Fig. 3). Underlying the phenylephrine-
mediated decreases in integrated MSNA at the highest dose
were decreases in neuronal discharge rate (APs/min, APs/100
heartbeats) and fewer unique clusters (max cluster number,
max clusters/burst), suggesting derecruitment of axons (P �
0.05 for all; Table 2). The firing probability (single and
multiple) of low-threshold axons was not altered with phenyl-

ephrine (Fig. 4), and the components of an integrated burst
were not altered (APs/burst, clusters/burst, P � 0.05; Table 2).

Modified Oxford procedure. Blood pressure decreased and
heart rate increased with nitroprusside, and values returned to
baseline levels with subsequent phenylephrine (main effect,
P � 0.01; Table 3 and Fig. 5). Nitroprusside elicited a robust
increase in integrated MSNA bursts that returned to baseline
levels with phenylephrine (main effect, P � 0.01; Table 3 and
Fig. 5). Underlying changes in integrated MSNA were in-
creases in neuronal discharge rate with nitroprusside (APs/min,
APs/100 heartbeats) that returned to baseline with subsequent
phenylephrine (main effect, P � 0.05; Table 3). No changes
were observed in AP recruitment (max cluster number P �
0.69, max clusters/burst P � 0.25; Table 3), and components of
a burst were not altered (APs/burst P � 0.22; mean clusters/
burst P � 0.36) during the modified Oxford procedure. Fur-
thermore, the firing probabilities (single and multiple) were not
altered (P value range 0.14–0.56; Fig. 6).
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Fig. 2. Sympathetic responses to steady-state systemic nitroprusside (NTP).
Data are means � SE from n � 13. Data were analyzed with a 2-way
repeated-measures ANOVA to determine the main effect of relative cluster
size (10–100% of total clusters) and condition (baseline, drug) and the
interaction of cluster and condition. A: probability of a relative cluster (10–
100% of total clusters) firing once per integrated MSNA burst. B: probability
of a relative cluster (10–100% of total clusters) firing more than once per
integrated MSNA burst. *P � 0.05 vs. baseline.
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Synaptic delays. AP cluster latency decreased with cluster
size in all protocols (P � 0.01) but was not altered with
nitroprusside (P � 0.42) or phenylephrine (P � 0.39) or during
the modified Oxford procedure (P � 0.40) (see Fig. 7).

DISCUSSION

The main new finding in this study is that baroreflex unload-
ing via a reduction in arterial pressure can elicit recruitment of

larger, faster-conducting sympathetic neurons. Conversely,
baroreflex loading via increases in arterial pressure can dere-
cruit neurons that are present at baseline. In both cases, we
confirm prior observations demonstrating that ongoing rate
coding of actively firing sympathetic neurons is under barore-
flex control and is especially important during transient de-
creases/increases in blood pressure. We also show synaptic
delays, which have been observed previously to be reduced

Table 2. Cardiorespiratory and sympathetic responses to systemic phenylephrine

Baseline Phenylephrine Dose 1 Phenylephrine Dose 2

Heart rate, beats/min 61 � 2 60 � 2 56 � 3*†
Systolic blood pressure, mmHg 145 � 4 144 � 4 150 � 4*†
Diastolic blood pressure, mmHg 77 � 2 79 � 2* 83 � 2*†
Mean blood pressure, mmHg 98 � 2 100 � 2 106 � 3*†
Respiratory rate, breaths/min 12 � 1 12 � 1 12 � 1
Tidal volume, l/breath 0.51 � 0.08 0.51 � 0.08 0.57 � 0.07
Minute ventilation, ml/min 5.8 � 0.8 6.0 � 0.7 6.7 � 0.8
Epinephrine, pg/ml 58 � 10 60 � 7 54 � 9
Norepinephrine, pg/ml 160 � 18 132 � 19* 132 � 20
Burst frequency, bursts/min 24 � 2 23 � 2 11 � 2*†
Burst incidence, bursts/100 heartbeats 41 � 3 39 � 4 21 � 3*†
Mean burst area, AU/min 1.3 � 0.4 1.2 � 0.4 0.5 � 0.1
Action potential frequency, APs/min 238 � 73 222 � 63 91 � 25*†
Action potential incidence, APs/burst 8.9 � 2.3 8.9 � 2.0 7.7 � 1.8
Action potential incidence, APs/100 heartbeats 406 � 128 377 � 102 166 � 42*†
Mean cluster incidence, clusters/burst 4.6 � 0.7 4.6 � 0.7 3.9 � 0.5
Max cluster incidence, clusters/burst 8.6 � 1.0 8.6 � 1.0 6.9 � 0.7*†
Max cluster number 14.6 � 2.3 15.1 � 2.2 8.9 � 0.8*†

Data are means � SE from n � 9 unless otherwise noted (dose 2: epinephrine and norepinephrine, n � 6). Data are reported as a 3-min average during the
final dose (phenylephrine dose 2, range 0.4–1.0, average 0.62 � 0.08 �g·kg�1·min�1) and during approximately half of the maximum dose (phenylephrine dose
1, range 0.2–0.6, average 0.29 � 0.05 �g·kg�1·min�1). Data were analyzed with a 1-way repeated-measures ANOVA. Normality was assessed with the
Shapiro-Wilk test. If not normally distributed, a Friedman repeated-measures ANOVA on ranks was conducted [minute ventilation, mean burst area, action
potential incidence (AP/burst), max cluster incidence]. Pairwise comparisons were done with the Holm-Sidak method. *P � 0.05 vs. baseline. †P � 0.05 vs.
phenylephrine dose 1.
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during physical stress [handgrip exercise (Badrov et al. 2016a),
voluntary apnea (Steinback et al. 2010a)] and somewhat pro-
longed during �80-mmHg lower body negative pressure
(Badrov et al. 2015), are unaffected by baroreflex loading/
unloading by pharmacological methods.

Nitroprusside. In the present investigation, we found that
pharmacological baroreflex unloading with systemic nitroprus-
side increases sympathetic neuronal discharge rate (rate cod-
ing) by increasing the firing probability of low-threshold axons
(Fig. 2), in addition to recruitment of latent, higher-threshold
axons (Table 1). This is similar to what has been observed
previously during severe chemoreflex stress (Steinback et al.
2010a, 2010b) but is in contrast to previous work from Sal-
manpour and colleagues showing that larger, faster-conducting
axons are minimally affected by baroreceptor pathways (Sal-
manpour et al. 2011a, 2011b; Salmanpour and Shoemaker
2012). However, the majority of these data were obtained
under baseline conditions, thus relying on spontaneous fluctu-
ations and/or low-level lower body negative pressure. In con-

trast, during more severe orthostasis (�80-mmHg lower body
negative pressure), the majority of individuals studied recruited
a new population of larger-amplitude, faster-conducting post-
ganglionic axons (Badrov et al. 2015; Salmanpour et al.
2011a).

Comparisons of outcomes of the present pharmacological
approach with observations using nonpharmacological models
(i.e., orthostatic stress evoked by lower body negative pressure;
Badrov et al. 2015; Salmanpour et al. 2011a) suggest that a
consistent physiological response can be achieved under con-
ditions of relatively stable baroreflex stress. With this, in the
present study we show that an ordered, hierarchical pattern of
neuronal recruitment is possible during intravenous infusion of
nitroprusside in healthy male adults and further support the
concept that subpopulations of larger-amplitude, faster-con-
ducting sympathetic axons that are not present at baseline can
be recruited during steady-state baroreflex stress. This pattern
of recruitment is not unlike recruitment of motor units during
muscular contraction (Adrian and Bronk 1929; Henneman
1957). It is important to acknowledge, however, that although
recruitment occurs, it expresses interindividual variations. For
example, previous work found that only 60–65% of individ-
uals recruit latent subpopulations of axons during severe or-
thostasis (�80 mmHg lower body negative pressure; Badrov et
al. 2015; Salmanpour et al. 2011a). Similarly, the present data
show an increase in maximum clusters per burst (indicating
recruitment) in 75% of individuals (n � 10 of 13) studied with
pharmacological methods.

We also observed an increase in the probability of multiple
firing (APs from the same cluster firing more than once per
burst) during steady-state nitroprusside infusion (Fig. 2B).
Macefield and colleagues have shown, using single-unit
MSNA recordings, that neurons typically fire only once per
integrated burst at rest (Macefield et al. 1994; Macefield and
Wallin 1999) and the same neuron can fire multiple times
within a single integrated burst during stress (Macefield and
Wallin 1999). Although the present analysis approach cannot
infer single-axon behavior, we show a relatively low probabil-
ity of multiple firing at baseline, which is augmented during
nitroprusside infusion.

Given that the frequency of neural discharge determines
neurotransmitter release patterns (Lambert et al. 2011), these
data may have important implications for neurovascular trans-
duction. More specifically, one would expect an increase in
release of norepinephrine and colocalized neurotransmitters
(i.e., neuropeptide Y) with an increase in multiple firing—a
concept that may be supported by the present data. With this,
it would be especially interesting to examine similar responses
in a group of individuals with known impairments in sympa-
thetic baroreflex sensitivity and/or neurovascular transduction.
For example, older individuals have a reduced capacity to
recruit latent neural subpopulations compared with young
adults (Badrov et al. 2016a). When combined with our new
observations, it is reasonable to speculate that impairments in
sympathetic baroreflex sensitivity observed with aging may be
related to attenuated recruitment of latent, high-threshold ax-
ons in response to baroreflex unloading.

Phenylephrine. To our knowledge, this is the first study of its
kind to examine derecruitment strategies of sympathetic axons
in humans. As noted above, a key strategy of the sympathetic
nervous system to alter neuronal activity is to change the
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number of active neurons and/or the firing probability of
neurons (Macefield and Wallin 1999). Previous work in motor
units has shown that the firing rate of earlier-recruited motor
units is greater than that of units recruited later (Henneman et
al. 1965). In support of this idea, our data show that the firing

probability of larger-diameter, higher-threshold axons is atten-
uated during pharmacological loading of the baroreflex. Spe-
cifically, there were fewer unique clusters present during the
highest dose of phenylephrine infused, compared with base-
line, and AP incidence was reduced (Table 2). In light of this,

Table 3. Cardiorespiratory and sympathetic responses during modified Oxford test

Baseline Nitroprusside Phenylephrine

Heart rate, beats/min 58 � 2 73 � 4*† 61 � 3
Systolic blood pressure, mmHg 138 � 4 130 � 4*† 139 � 5
Diastolic blood pressure, mmHg 75 � 3 65 � 3*† 75 � 3
Mean blood pressure, mmHg 96 � 3 86 � 3*† 95 � 3
Respiratory rate, breaths/min 13 � 1 12 � 1 12 � 1
Tidal volume, l/breath 0.58 � 0.10 0.77 � 0.07 0.98 � 0.17*
Minute ventilation, ml/min 7.1 � 1.0 8.9 � 1.1 11.5 � 2.1*
Burst frequency, bursts/min 21 � 1 36 � 2*† 22 � 4
Burst incidence, bursts/100 heartbeats 37 � 4 53 � 4*† 37 � 7
Mean burst area, AU/min 1.1 � 0.2 2.1 � 0.2*† 1.2 � 0.2
Action potential frequency, APs/min 222 � 36 454 � 71*† 254 � 74
Action potential incidence, APs/burst 10.3 � 1.2 12.2 � 1.8 10.7 � 1.6
Action potential incidence, APs/100 heartbeats 398 � 75 678 � 120* 431 � 127
Mean cluster incidence, clusters/burst 5.3 � 0.6 5.4 � 0.6 5.0 � 0.5
Max cluster incidence, clusters/burst 9.8 � 0.8 10.0 � 0.9 10.3 � 1.0
Max cluster number 10.7 � 1.2 11.3 � 1.2 10.6 � 1.2

Data are means � SE from n � 9. Data were analyzed with a 1-way repeated-measures ANOVA. Normality was assessed with the Shapiro-Wilk test. If not
normally distributed, a Friedman repeated-measures ANOVA on ranks was conducted (heart rate). Pairwise comparisons were done with the Holm-Sidak method.
*P � 0.05 vs. baseline. †P � 0.05 vs. phenylephrine.
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we can conclude that neurons present at baseline exhibiting the
highest threshold activation (larger diameter, shorter latency)
are the first lost under conditions of baroreflex loading. Based
on the understanding that sympathetic neurons directed to

skeletal muscle vasculature are vasoconstrictor signals, we
surmise that, although changes in cluster number are relatively
subtle in the present model, they should have an impact on
regulation of vascular tone. Such findings may have important
implications for clinical conditions such as hypertension,
where one could speculate that patients may be unable to
derecruit high-threshold axons with increases in arterial blood
pressure. However, it is important to acknowledge that, con-
trary to our hypothesis, any changes in neuronal firing and
recruitment were only observed at the highest dose of phenyl-
ephrine and relatively small (~2 mmHg) changes in blood
pressure had minimal effect on AP recruitment.

Modified Oxford procedure. Three returning subjects and six
naive individuals completed a third protocol that consisted of a
bolus infusion of nitroprusside followed immediately by a
bolus infusion of phenylephrine (modified Oxford technique)
(Ebert 1990; Rudas et al. 1999; Smyth et al. 1969). This
approach is often used experimentally to examine sensitivity of
the arterial baroreflex and is considered the “gold standard”
(Rudas et al. 1999). With this, results from the modified
Oxford approach vary from conclusions obtained during indi-
vidual infusions in the following areas: 1) bolus nitroprusside
did not increase recruitment of latent axons and 2) bolus
phenylephrine did not decrease firing of larger, faster-conduct-
ing axons. The severity of the stimulus in terms of a change in
blood pressure is relatively consistent between the protocols,
and thus we speculate that differences in the response may be
due to differing lengths of time over which the stress is
occurring (seconds vs. minutes). From this, we can conclude
that transient changes in blood pressure rely on rate coding
rather than recruitment to achieve changes in sympathetic
activation, which is in contrast to responses observed during
steady-state infusions, where axonal recruitment/derecruitment
was observed. It is also possible that recruitment/derecruitment
occurs briefly in one or two bursts at the nadir/peak blood
pressure during the modified Oxford procedure that are not
detectable by current analysis methods. However, previous
published work has shown that short (8–47 s) sections of data
do not significantly impact detectable clusters (Badrov et al.
2016a), and thus this is a minor limitation.

Synaptic delays. Wallin and colleagues have shown an
inverse relationship between burst latency (measured as the
delay of an integrated MSNA burst from a representative ECG
R wave) and burst size, with larger bursts exhibiting shorter
reflex latencies (Wallin et al. 1994). Consistent with this, we
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observed an inverse relationship between AP cluster amplitude
and conduction velocity, with larger clusters exhibiting a
shorter latency (Fig. 7). Macefield and colleagues have also
shown that the latency of a single axon is highly variable at rest
(Macefield et al. 1994), and in situations of severe physiolog-
ical stress altered synaptic delays and/or central processing
times have been suggested (Badrov et al. 2015; Coote and
Macleod 1974; Fagius et al. 1987; Salmanpour et al. 2011b;
Wallin et al. 1994). Along these lines, Badrov and colleagues
found that AP clusters were recruited more slowly (longer
latency) during severe orthostasis (Badrov et al. 2015). In the
present investigation, synaptic delays were unaffected by phar-
macological baroreflex loading/unloading. We hypothesize
that clear shifts in cluster latency profiles may be primarily the
result of changes in central processing and thus likely occur
only in situations where an individual level of perceived stress
and/or tolerance is present (Badrov et al. 2015, 2016a, 2016b,
2017); however, future work in this area is needed.

Experimental considerations. Fagius and colleagues (Fagius
et al. 1985) showed by blocking baroreceptor afferent activity
that the normal cardiac rhythmicity of MSNA was disrupted
and impulses instead occurred in a slow, irregular rhythm.
Thus it may be expected that nitroprusside infusion, via arterial
baroreflex unloading, would reduce the pulse-synchronous na-
ture of MSNA and augment observed latencies. We did not
observe augmented latencies in the present study; however,
APs that are not pulse synchronous or not comprised within a
burst are not included in the present analysis. Future work will
be necessary to examine changes in activity of APs that are not
pulse synchronous or incorporated into a multiunit MSNA
burst.

The present approach classifies the contribution of multiple
vasomotor neurons to multiunit integrated MSNA bursts mor-
phologically based on peak-to-peak amplitude (Salmanpour et
al. 2010). This approach compliments the single-unit approach
(Macefield et al. 1994; Macefield and Wallin 1999), although
it cannot determine whether APs with the same size/morphol-
ogy are from the same or different neurons (Salmanpour et al.
2010). Furthermore, detection of APs by this method requires
adequate signal-to-noise ratio. The average signal-to-noise ra-
tio for the data was between 4.25 � 0.21 (phenylephrine) and
4.51 � 0.22 (nitroprusside). Based on previous work (Salman-
pour et al. 2010), this level of signal-to-noise ratio would
produce a correct detection rate of ~90% and a false positive
detection rate of �3%. Finally, these studies were all con-
ducted in young, healthy male participants with relatively
normal baroreflex function. Whether these findings translate to
women and/or individuals with impaired baroreflex function
has yet to be assessed.

Conclusions. In the present investigation we used a pharma-
cological approach (the “gold standard”) to elicit targeted
increases/decreases in arterial blood pressure. Our data point to
an important role for baroreflex mechanisms in modifying AP
rate coding patterns. In addition, we show that the sympathetic
nervous system has the ability to recruit latent subpopulations
of large APs during steady-state unloading of the baroreceptors
in healthy male participants and derecruit during baroreflex
loading, with some interindividual variation. Conversely, re-
cruitment was not apparent during large, but transient, fluctu-
ations in arterial pressure. Further work will be needed to see

whether these results translate to conditions with known baro-
reflex impairments.
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